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We consider the semiclassical ballistic � model as an effective theory describing the quantum mechanics of
classically chaotic systems. Specifically, we elaborate on close analogies to the recently developed semiclas-
sical theory of quantum interference in chaotic systems and show how semiclassical “diagrams” involving near
action degenerate sets of periodic orbits emerge in the field theoretical description. We further discuss how the
universality phenomenon �i.e., the fact that individual chaotic systems behave according to the prescriptions of
random matrix theory� can be understood from the perspective of the field theory.
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I. INTRODUCTION

In recent years, significant progress has been made in un-
derstanding the semiclassical basis of universality in quan-
tum chaos. In a sequence of steps �1–6�, the theory of action
correlations and periodic orbits has advanced to a stage,
where the full information stored in the spectral correlation
functions of random matrix theory �RMT� has become acces-
sible by semiclassical methods. An important element in this
development has been the establishment of a cross-link be-
tween semiclassics and the so-called zero-dimensional �
model �which in turn had long been known �7� to be in
one-to-one correspondence to RMT�: under conditions of
global hyperbolicity and for low energies �energies lower
than the inverse � / tE of the so-called Ehrenfest time, tE�,
individual contributions to the semiclassical expansion of
spectral correlation functions become fully universal in that
they depend on combinatorics and topology of the underly-
ing orbit correlations, but not on system specific details.
Each such term has a corresponding contribution to the loop
expansion of the zero-dimensional � model around one of its
saddle points. From a certain perspective, the semiclassical
analysis of spectral correlations has, thus, been tantamount to
a reduction of the full microscopic information stored in the
Green functions of an individual chaotic system down to the
core data encapsulated in the zero-dimensional � model.

In this paper, we discuss an alternative reduction scheme,
which is similar in spirit, but methodologically different. Our
starting point will be the observation that the zero-
dimensional � model affords an alternative interpretation,
viz. as the globally uniform mean field limit of the ballistic �
model. The ballistic � model in its variant considered here is
an effective field theory of chaotic systems, obtained from a
microscopic parent theory �8–10� by projection onto the sec-
tor of fields fluctuating on length scales ��. We will present
various arguments to the effect that this projection captures
the essential physics of the problem. The resulting effective
field theory is defined on shells of conserved energy in clas-
sical phase space. Its dynamics is controlled by the—equally
classical—Liouville operator. Quantum mechanics enters the
theory through a feature known as “noncommutativity.” In
practice, noncommutativity implies that points in phase
space can be defined only up to a maximal resolution set by
the Planck cell. �Notice that the typical linear extensions of

Planck cells are of O��1/2�, much bigger than the cutoff
length of the theory.� Below we will explore the conspiracy
of classical hyperbolicity and Planck cell resolution in the
long time dynamics of chaotic systems.

Specifically, we will show that a perturbative expansion of
the model leads to structures that are remarkably similar, if
not equivalent, to those arising in periodic orbit theory: tak-
ing the first quantum correction to the spectral correlation
function �the “Sieber-Richter term” �2�� as an example, we
will recover information on the phase space available to in-
dividual families of periodic orbits, and the corresponding
action correlations. The actual integrals describing these cor-
rections turn out to be identical to those of periodic orbit
theory. This finding suggests a quantitative identification of
the Feynman diagrams of the theory with the action-
correlated orbit pairs of semiclassical analysis. �However, an
extension of the calculation to higher orders in perturbation
theory, necessary to substantiate this claim, is beyond the
scope of the present paper.�

Going beyond perturbation theory, we will demonstrate
that for correlation energies smaller than the inverse of the
Ehrenfest time nonuniform fluctuations in phase space are
effectively suppressed. The resulting theory of uniform fluc-
tuations �viz. the zero-dimensional � model� predicts univer-
sal behavior, in agreement with the predictions of RMT.
Field theory thus provides a comparatively simple way of
understanding the basis of the Bohigas-Gianonni-Schmid
�11� universality hypothesis, alternative to the explicit sum-
mation over infinite hierarchies of periodic orbits �6�. The
computational efficiency of the “mean field plus fluctua-
tions” approach to universality arguably represents the most
important advantage of the present formalism.

The rest of the paper is organized as follows: in Sec. II we
review the semiclassical ballistic � model. In Secs. III and
IV, respectively, we explore the field theory approach to uni-
versality, and the connections to periodic orbit theory. A
number of issues relating to the derivation of the theory will
be addressed in Appendix A.

II. BALLISTIC � MODEL

We wish to explore correlations in the level density, ��E�,
of globally hyperbolic �chaotic� quantum systems, as charac-
terized by the two point correlation function R2�s�
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������E�− ���E����. Here, �¯� de-
notes averaging over E over an interval �E0−Eav/2 ,E0

+Eav/2�, where Eav�E0. The goal is to show that for ener-
gies �=s� /���tE

−1 the function R2�s� approaches the spec-
tral correlation functions of RMT. Here, tE�	−1ln�c2 /�� is
the Ehrenfest time, 	 the dominant Lyapunov exponent of
the system, and c2some classical reference scale of dimen-
sion “action” whose specific value will not be of much rel-
evance �12�.

We represent the spectral correlation function in terms of
a replica generating functional. �Choosing the replica variant
of the theory is motivated by its high suitability to perturba-
tive calculations �4�; it is a matter of a straightforward re-
definition of the field target space to upgrade the formalism
to a supersymmetric field theory.�

R2�s� = −
1

2
Re lim

R→0

1

R2�s
2Z�s� , �1�

where R is the number of replicas and the generating func-
tion is defined as

Z�s� � � DT exp�− S�T�� ,

S�T� =

��

2�
�

�

�dx�tr	T−1 * �
H,T� +
is�

2��
�T−1 * �T� .

�2�

Equation �2� has the status of an effective field theory in
classical phase space, obtained from a microscopic parent
theory—the energy averaged field integral representations of
the microscopic Green functions �8–10�—by elimination of
field configurations fluctuating on short scales 
�. In Ap-
pendix A we will argue that Eq. �2� relates to the micro-
scopic formalism in much the same way the semiclassical
Gutzwiller sum relates to the microscopic Feynman path in-
tegral.

The integration variables in �2�, T�x�= 
T����x�� are ma-
trix valued fields defined on shells �= 
x 
H�x�=E0� of con-
stant energy in classical phase space. Here, x��q ,p� where
q and p are coordinates and momenta, respectively, H�x� is
the Hamiltonian function of the system, and the integral over
the energy shell is normalized to unity, ���dx�=1. For time
reversal and spin rotation invariant systems �orthogonal sym-
metry class, 
=1�, the “internal” structure of the matrices
T��� is described by a composite index �= �a ,r , t�, where a
= + /− discriminates between the advanced and retarded sec-
tor of the theory, r=1, . . . ,R is a replica index, and t=1,2
accounts for the operation of time reversal. Time reversal
symmetry reflects in the relation �2

trTT �2
tr=T−1, where �i are

Pauli matrices and the superscript “tr” indicates action in
time reversal space. For time reversal noninvariant systems
�unitary symmetry, 
=2� no time-reversal structure exists
and �= �a ,r�. In either case, the matrices T carry a coset
space structure in the sense that configurations T and TK are
identified if �K ,��=0, where �=�3

ar and “ar” stands for ac-
tion in advanced/retarded space.

The fluctuation behavior of the fields T in �2� is governed
by the classical Liouville operator 
H , � �where 
 , � is the
Poisson bracket�. Quantum mechanics enters the problem
through the back door, viz. by the presence of Moyal prod-
ucts “*” in �2�. The Moyal product between two phase space
functions A and B is defined as

�A * B��x� =� dfx1

���� f

dfx2

���� f e
2i
�

x1
TIx2A�x + x1�B�x + x2� ,

�3�

where I�� 0 1
−1 0

� is the symplectic unit matrix. �For all prac-
tical purposes, the definition �3� will be more convenient
than the standard representation �13�, �A*B��x�
=exp� i�

2 �x�
T I�x� A�x��B�x�
x=x�.� The presence of the Moyal

product implies that �a� all quantities appearing in the theory
get effectively averaged �smoothened� over Planck cells. Re-
latedly, �b� the generator of classical time evolution 
H , �
acts on distributions smooth in phase space on scales �� f,
rather than on mathematical points. In the following sections
we will explore how the interplay of hyperbolic dynamics
�
H , �� and Planck cell smearing �*� determines the output
of the theory.

III. UNIVERSAL LIMIT

We wish to explore the behavior of the theory �2� for
correlation energies ���tE

−1 much smaller than the inverse
of the Ehrenfest time. For simplicity, we will consider sys-
tems with broken time reversal invariance throughout this
section.

For energies ���⇔s�1, the partition function Z�s�
may be evaluated by perturbative methods. To prepare the
perturbative expansion of the action, we introduce the ratio-
nal parameterization

T = 1 + W, W = 	 − B†

B
� , �4�

where the block structure is in advanced/retarded space
and the generators B are R�R complex matrices. Substitu-
tion of this representation then leads to a series S�B ,B†�
=�n=1

� S�2n��B ,B†�, where S�n� is of nth order in B and B†.
Specifically,

S�2��B,B†� = tH�
�

�dx�tr�B†L�B� , �5�

where

L� = − i�/� − 
H, � �6�

and the Moyal product stars have been omitted for notational
simplicity. Higher order terms in the action contain traces
over �Moyal� products of matrices BB† . . .B†. Due to the
Planck-cell “averaging” inherent to the product �3�, the Wick
contraction of individual matrix elements of B and B† will
generate expressions

MÜLLER, MICKLITZ, AND ALTLAND PHYSICAL REVIEW E 76, 056204 �2007�

056204-2



P��x̌, x̌�� = �
0

�

dtei�t�−1
Pt�x̌, x̌�� , �7�

where

P� � �− i�/� − 
H, ��−1, Pt � et
H, � �8�

are the �retarded� Liouville propagators in the energy and
time representation, respectively, x and x� are arbitrary
points in phase space and

f�x̌� �
1

� f�
�f

dfyf�x + y�

is symbolic notation for coordinate averaging over a Planck
cell. We interpret Pt�· , x̌�� as the dynamical evolution of a
smooth phase space distribution of extension � f and centered
around x�. It has been rigorously shown by methods of sym-
bolic dynamics �14� that for times t
 tE, these distributions
are centered around the classical trajectory through x�, i.e.,
the dynamics is approximately described by the Liouville
evolution of x�. However, beyond t� tE, the distribution rap-
idly �over time scales comparable to tmix� crosses over to a
uniform distribution in phase space. These structures are
summarized in the ansatz

Pt�x̌, x̌�� � ����x̌ − x̌��t�� , t � tE,

1, t � tE,
�9�

where �= hf

� is the volume of the energy shell, and the nor-
malization is such that for our unit-normalized phase space
integral, ���dx�Pt�x̌ , x̌��=1.

For energy scales �
�tE
−1 the dominant contribution to

the time integral in �7� comes from large times tE
 t
���−1. One expects that in this regime phase space fluctua-
tions will have effectively relaxed to spatial uniformity. To
describe the damping of inhomogeneous modes in more ex-
plicit terms we follow a prescription formulated by Kravtsov
and Mirlin �15�, then in the context of diffusive systems:
employing the ansatz

T�x� = T0�1 + WP�x�� �10�

we isolate the inhomogeneous contents of the fields T. Here,
T0=const describes the zero mode sector and

WP�x� � W�x� − WQ�x�, WQ�x� � �
�

�dx�W�x�

is a projection onto purely fluctuating field configurations:
��dx�WP�x�=0. Substitution of Eq. �10� into the action and

expansion to second order in WP=� −BP
†

BP
� generates the de-

composition

S�T0,WP� = S0�Q0� + S�2��BP,BP
† � + Sc�T0,BP,BP

† � , �11�

where

S0�Q0� =
i��

2�
tr�Q0��, Q0 = T0�T0

−1 �12�

is the zero mode action, and

S�2��BP,BP
† � = tH�

�

�dx�tr�BP
†L0BP� , �13�

the quadratic action of the fluctuating fields governed by the
generator L0=L�=0=�− 
H , �, �↘0 of the time integrated
dynamics. Finally,

Sc�T0,BP,BP
† � = −

i�tH

2�
�

�

�dx�tr��T0
−1�T0�11BP

† BP

− �T0
−1�T0�22BPBP

† ��x� , �14�

where the superscripts refer to advanced-retarded space. Fol-
lowing Ref. �15�, we expand in Sc, retaining only contribu-
tions of minimal order in �:

S0�Q0� → Seff�Q0� = S0�Q0�

+ �Sc�T0,BP,BP
† �� −

1

2
��Sc�T0,BP,BP

† ��2� ,

where �¯���D�Bp ,BP
† �exp�−S�2��BP ,BP

† �� �¯�. While the
contraction of the B’s in the first contribution to the second
line vanishes in the replica limit, the second term generates
the effective action

Seff�Q0� = S0�Q0� −
�2

16�2 �tr�Q0���2

� �
�

�dx��dx���PP�0�x,x���PP�0�x�,x� , �15�

where, again, the subscript P stands for projection onto the
fluctuating sector:

�PP�0�x,x�� � 	1 − �
�

�dx��	1 − �
�

�dx���P0�x,x��

= �
0

�

dt���x − x��t�� − �−1� , �16�

and in the last line we have switched to a time representa-
tion. Notice that the Liouville propagator in Eq. �15� is
evaluated on single phase space points, x and x�, rather than
on Planck cells x̌ and x̌�. This is because the phase space
integral of the Moyal product of two operators collapses to
the ordinary product �16�, i.e.,

�
�

�dx�tr��T0
−1�T0�11BP

† * BP��x�

= �
�

�dx�tr��T0
−1�T0�11BP

† �x�BP�x�� .

Substituting the result Eq. �16� into Eq. �15�, we obtain

Seff�Q0� = S0�Q0� −
tE�

16�2 �� tr�Q0���2

� �
0

�

dt�
�

�dx����x − x�t�� − �−1� . �17�

According to Eq. �17�, the correction term is given by the
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integrated weight of periodic orbits x→
t

x of duration t, minus
the total phase volume. Using that �17�

lim
T→+�

1

T
�

0

T

dt�
�

�dx����x − x�t�� = 1,

one concludes that this term cancels, i.e., to lowest order in
the expansion, fluctuations of the inhomogeneous modes do
not change the universal zero-mode action. At higher orders
in the expansion, we are met with expressions �cf. Eq. �7��

�PP���x̌, x̌��

= �
0

�

dtei
�t
� 	1 − �

�

�dx��	1 − �
�

�dx���Pt�x̌, x̌��

� �
0

tE

dtei
�t
� ����x − x��t�� − 1� ,

where Eq. �9� was used. The important point here is the
truncation of the time integral at tE. This means that at nth
order in the expansion in fluctuation propagators, PP, correc-
tions ���tE /��n will be generated. Our analysis above
shows that terms with n
3 cancel, i.e., corrections to the
zero mode action can arise only at O��tE�−1��O�tE / tH�3,

Seff�Q0� = S0�Q0� + O��tE/��n�3.

This observation is consistent with the periodic orbit analysis
of Ref. �18� where it has been shown that the leading correc-
tion to the universal result scales as ��tE /��3.

Summarizing, our analysis shows that at correlation ener-
gies �
� / tE inhomogeneous fluctuations get effectively
damped out and the field theory collapses to an integral over
the zero mode. This means that RMT results �plus weak cor-
rections in the parameter ��tE/��n�3� will be obtained for
spectral correlation functions, and other observables probing
the long time behavior of the system. Our “mode damping”
approach to universality is complementary to semiclassical
analysis �6�, where the spectral correlation functions are con-
structed explicitly, by summation over infinite hierarchies of
periodic orbits. The connection between these approaches
will be explored in the next section.

IV. PERTURBATIVE EQUIVALENCE TO SEMICLASSICS

Having shown that the ballistic � model crosses over to
the universal zero dimensional model at low energies, we
now approach the problem from a different perspective. We
will perform a straightforward perturbative expansion around
the high energy saddle point � to elaborate on parallels be-
tween the field theory �2� and the periodic orbit approach to
spectral correlations. Focusing on the lowest order �in �, see
below� quantum corrections to the spectral form factor �the
so-called Sieber-Richter term �2��, we will show that the two
formalism are structurally similar, to an extent that the cor-
relations of individual periodic orbits can be reproduced
from the field theory formalism.

Throughout this section, we will consider time reversal
invariant systems, i.e., 
=1.

A. Semiclassics

For the benefit of nonexpert readers, we begin with a brief
review of recent semiclassical results. Consider the Fourier
transform of the spectral correlation function,

K��� �
1

�
� dsR2�s�e−2is�. �18�

The RMT result for the 
=1 form factor reads as

K��� = �2� − � ln�1 + 2�� , � 
 1

2 − � ln	2� + 1

2� − 1
� , � � 1. � �19�

Specifically, the short time expansion of the spectral form
factor in ��1 �corresponding to the expansion of the spec-
tral correlation function in ���� starts as

K��� = 2� − 2�2 + ¯ . �20�

In semiclassics one aims to reconstruct that expansion from
the Gutzwiller double sum over periodic orbit pairs �� ,���,

K��� =��
���

A�A��
* e

i
�

�S�−S����	� −
t� + t��

2tH
�� , �21�

where �¯� is an average over orbit energies �and a small
interval of orbit times� and A�, S�, and t� are the stability
amplitude, the action, and the time of traversal of orbit �,
respectively.

The first term in �20� obtains from Berry’s diagonal ap-
proximation,

K�1���� � 2� ,

i.e., an approximation that retains only identical orbits �
=�� and mutually time reversed �= �̄� orbits, and uses the
Hannay-Ozorio de Almeida �19� sum rule ��� 
A�
2���
− t� / tH��=� to determine the weight of the remaining orbit
sum.

The structure of the leading order �in �� quantum correc-
tions to the spectral form factor was first identified by
Aleiner and Larkin �1�: two orbits differing in the presence
or absence of a small angle self-intersection in configuration
space interfere to provide a stable contribution to the double
sum �cf. Fig. 1.� For the sake of later comparison to the �
model formalism, we briefly review the quantitative compu-
tation of this contribution �2� in the invariant language of
hyperbolic phase space coordinates �20� for a system with
f =2 degrees of freedom.

Imagine a Poincaré section cutting through the encounter
region where the participating orbit segments have their
�avoided� self-intersection �cf. Fig. 2�. Choosing one of the
piercing points, x, as the origin of a local coordinate system
�cf. inset of Fig. 2�, we introduce 2f −1=3 energy shell co-
ordinates �t ,u ,s�, where t is a timelike coordinate running
along the trajectory through x, and u /s are coordinates along
the locally unstable/stable directions �the existence of the
latter guaranteed by the assumption of global hyperbolicity.�
One may then show �2,20� that the contribution of all orbit
pairs containing a single encounter region is given by
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K�2���� = 2
�2

h
� dudsei�−1us t − 2tenc�u,s�

2tenc�u,s�
= − 2�2. �22�

Here, tenc�u ,s�=	−1 ln�c2 /us� is the time of traversal through
the encounter region, 	 the �self-averaging� Lyapunov expo-
nent of the system, and c2 some classical action scale. We
note that �i� the dominant contributions to the integral are of
order us�� implying that tenc�u ,s��	−1 ln�c2 /�� is of the
order of the Ehrenfest time, �ii� the product us is an invariant
of the motion �Liouville’s theorem�, which means that the
choice of the Poincaré section entering the construction is
arbitrary, and �iii� the only surviving contribution to the in-
tegrand in �22� are of order O�tenc�u ,s�0�. �Terms containing
tenc, either from the numerator, or the expansion of the de-
nominator can be shown to effectively oscillate to zero in the
semiclassical limit �3,4,6�.�

In later work, the perturbative analysis of action correla-
tions has been extended first to cubic and then to infinite
order �3–5� in the � expansion. Employing an unconventional
representation of the two-point correlation function �6� it has

also been possible to reconstruct the bottom part of Eq. �19�,
which is not accessible in terms of a straightforward series
expansion of the conventional two-Green function represen-
tation.

B. Field theory

Equation �22� encapsulates the phase volume available to
individual pairs of interfering trajectories �preexponent� and
the corresponding action correlation �exponent�. Extending
the analysis of Ref. �16�, we will show below that the same
information is stored in the effective action �2�. Although our
discussion will be restricted to first order in perturbation
theory in � �the extension of the analysis to higher orders in
perturbation theory is left for future work�, it suggests a gen-
eral equivalence between periodic orbit theory and the per-
turbative expansion of the � model.

In the time reversal invariant case considered here, the
blocks B in �4� are �2R�2R� matrices subject to the time
reversal symmetry condition B†=−�2

tr BT�2
tr.

Substitution of this representation into the action �2� gen-
erates the first order correction to the spectral correlation
function

R2�s��2� = − Re lim
R→0

tH

�2R�2�s
2�

�

�dx��tr�B†BB†L�B�� ,

where we have omitted the Moyal product stars for the sake
of notational simplicity, and averaging is over the quadratic
action, �¯���D�B† ,B�e−S�2��B,B†��¯�. Doing the Gaussian
integrals over matrix elements of B, we obtain �cf. Ref. �16�
for technical details�,

R�2��s� = Re
�2

tH
�s

2�
�

�dx� � dy1dy2

�2���2�f−1�e
i
�

y2
TIy1P��x

+ y1/2,x − y1/2�L�,x+y2/2P��x + y2/2,x − y2/2� .

Here, x̄��q ,−p�T is the time reversed of the phase space
point x= �q ,p�T, the integrals over y1 and y2 represent the
generalization of the Moyal product �3� to the trace of a
product of four operators, and the subscript x in L�,x indi-
cates on which coordinate of the propagator P��x ,x�� the
derivatives of the Liouville operator act. To make further
progress, we Fourier transform the expression above where-
upon it transmutes to the first quantum correction to the
spectral form factor,

K�2���� = − 2�2�2�
�

�dx� � dy1dy2e
i
�

y2
TIy1

�2���2�f−1� �
0

t

dt�Pt−t��x

+ y1/2,x − y1/2�Lt�,x+y2/2Pt��x + y2/2,x − y2/2� .

�23�

Here, Lt��t− 
H , � and Pt is the propagator in time repre-
sentation �cf. Eq. �8��.

Equation �23� contains the essence of the process shown
in Fig. 1: K�2���� is expressed in terms of a product of two
ergodic return probabilities at times t� and t− t�, respectively.
The fine structure of the encounter dynamics �the boxed re-

�
1/2

c

FIG. 1. �Color online� Cartoon of an orbit pair contributing to
the first quantum correction to the spectral form factor.

y

x� x

y�

ti to
tE

y�

x y

x�
u

s

FIG. 2. �Color online� Phase space representation of the encoun-
ter region. Here the bar in x̄� , ȳ� stands for time reversal, as dis-
cussed in the text.
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gion in the figure� is encapsulated in the integral over phase
space coordinates y1,2. As we will see momentarily, this in-
tegral limits the integral over t� to a window �tenc , t− tenc�,
again in analogy to semiclassical analysis.

To proceed we introduce a coordinate system that has x as
its origin and x+x�↔ �r ,u ,s�, where r is the coordinate of x�
along the classical trajectory running through x and u and s
parameterize the components of x� in the locally stable and
unstable direction around x �see Fig. 2�. We assume �21� that
the function Pt�x+y /2 ,x−y /2� exhibits the following char-
acteristics: �i� Pt�x+y /2 ,x−y /2�= Pt�u� depends only on the
unstable component of y. Indeed, this component controls
the rate at which the trajectory starting at x−y /2 deviates
from that through x. This deviating component �rather than
the approaching component, s, determines the spatial and
temporal structure of the Lyapunov region. Conversely,
Pt�x+y /2 ,x−y /2� depends only on s. �ii� In order for
Pt�x+y /2 ,x−y /2� to become nonvanishing, the two trajec-
tories through x−y /2 and x+y /2 must have left the
Lyapunov region around x �cf. the “large scale picture” Fig.
1�. This takes a time of order 2� t�u�, where

t�u� � 	−1 ln�c/
u
�

accounts for “half” of the encounter time. Additional to this
time, some time of classical duration, roughly of order tmix, is
required to “tie” the outgoing and incoming trajectory seg-
ments to a closed link. These assumptions are summarized in
the ansatz

Pt�x + y/2,x − y/2� = �−1�̃�t − 2t�u�� , �24�

where �̃ is a smeared step function interpolating between
zero and unity over a time interval of order tmix. Neither the

detailed structure of �̃, nor the exact value of t�u� are of
further relevance. We note, however, that the postulated in-
dependence of Pt of the “longitudinal” coordinate, r, implies
stationarity of the long time probability distribution Pt�t�u�
under the Hamiltonian flow, 
H , Pt�t�u��=0.

Using that LtPt��tPt, the first quantum correction be-
comes �f =2�

K�2���� = −
2�2�2

�2���2�
0

t

dt�� du1ds1du2ds2e
i
�

�u1s2−s1u2�

�Pt−t��s1��t�Pt��u2�

=
�2�2

2��
�

0

t

dt�� dudse
i
�

usPt−t��s��t�u�Pt��u�

�
�2

2��
� dudse

i
�

us�t�u��t − 2t�u� − 2t�s��

=
2�2

2��
� dudse

i
�

us�tenc�u,s�
t − 2tenc�u,s�

2

=
2�2

2��
� dudse

i
�

us t − 2tenc�u,s�
2tenc�u,s�

, �25�

in agreement with the semiclassically derived expression
�22�. In the first line we used that, under the conditions stated

above, the long time probability distribution is invariant un-
der the action of the Liouville operator. In the fourth line, we
introduced the full encounter time, tenc= t�u�+ t�s�, and the
last equality is based on the above mentioned vanishing of
any power �tenc�u ,s��n upon integration against the oscilla-
tory kernel �exp�i�−1us�.

The derivation above demonstrates that field theory and
semiclassics, respectively, allocate the same phase space vol-
ume to single encounter processes. We finally show that the
field theoretical expression �25� indeed affords an interpreta-
tion in terms of individual periodic orbits. To this end, we
consider a Poincaré section through the encounter, as shown
schematically in Fig. 3. The four lines terminating in the two
pairs of connected points in the phase space plane represent
segments of classical trajectories beginning at x+y1,2 /2 and
x−y1,2 /2, respectively, i.e., idealized classical trajectories
corresponding to the arguments of the field theory propaga-
tors in �23�. Each of these points has a stable �s� and an
unstable �u� coordinate. The fact that the propagators P are
retarded implies that we can distinguish between “incoming”
and “outgoing” terminal points. Now, consider the behavior
of a trajectory carrying the stable coordinate of an incoming
terminal propagator point, and the unstable coordinate of a
terminal point of the other propagator pair �cf. inset of Fig.
3�. The trajectory running through this reference point will
interpolate between the propagator stretches involved, and is
naturally interpreted as part of a closed loop. The analogous
definition of three more points �see inset of Fig. 3� plus as-
sociated trajectory stretches leads to the identification of a
periodic orbit and its topologically distinct partner orbit. The
action difference between these two orbits is but the product
us. This construction implies an interpretation of the field
theory expression �25� purely in terms of periodic orbits. The

s

u

x

x�

y

y�

u

r

s

FIG. 3. �Color online� Assignment of propagator coordinates
�lines terminating in thick points� to Feynman amplitudes �lines
continued through the Poincaré section�.
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correspondence between the two formalisms is established in
terms of symplectic coordinates �u ,s , t� characterizing indi-
vidual periodic orbits: apparently, the action �2� encapsulates
fine structure information about hyperbolic dynamics and ac-
tion correlations in ergodic quantum systems.

V. SUMMARY AND DISCUSSION

In this paper we have considered the semiclassical ballis-
tic � model as an effective theory of quantum chaos. Defined
in classical phase space, the semiclassical � model is a field
theory whose dynamics is driven by the classical Liouville
operator. Quantum mechanics enters through a structure
known as noncommutativity. In practice, noncommutativity
�i� limits the maximal resolution of the theory to structures of
the order of the Planck cell, and �ii� leads to the appearance
of characteristic phases, which play a role analogous to the
action correlations of periodic orbit theory.

We have shown in perturbation theory that the � model
describes spectral correlations in far reaching analogy to
semiclassics. The fact that semiclassics and field theory at-
tribute the same weight to individual orbit correlations in
phase space �cf. Eqs. �22� and �25�� makes one suspect that
the � model fully encapsulates the information carried by the
Gutzwiller double sum. However, this expectation has not
been proven beyond first order in perturbation theory.

Perhaps most importantly, we have shown that the semi-
classical � model provides for an efficient description of the
crossover to the universal regime of RMT correlations at
energies below the inverse of the Ehrenfest time. Adapting a
technique originally developed by Kravtsov and Mirlin to
describe spectral correlations in disordered systems, we saw
that in chaotic systems—in contrast to disordered systems—
quadratic inhomogeneous fluctuations do not give relevant
corrections to the universal action. Extending this approach
to higher orders in the inhomogeneous modes, a systematic
quantitative estimate for the corrections to RMT spectral sta-
tistics in individual chaotic systems can, in principle, be ob-
tained. Methodologically, this way of approaching the uni-
versality phenomenon is complementary to �and arguably
more economical than� the infinite order summations over
correlated orbit pairs of Refs. �3,4�.
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APPENDIX A: REGULARIZATION

The � model discussed in the foregoing sections has the
status of an effective theory, obtained from an underlying
“bare” theory by elimination of rapid fluctuations. In this
section we discuss the status of that reduction. Comparing to
semiclassics, we will argue that the projection onto an effec-
tive field theory resembles the passage from the Feynman
path integral to the semiclassical Gutzwiller sum.

The action of the bare ballistic � model �8–10� is given
by

Squ�T� = −
i
�

2Eav
tr	T−1��Ĥ,T� −

�s

2�
�T−1�T� , �A1�

where Ĥ is the Hamiltonian operator of the system and tr is
a trace over Hilbert space, projected to an energy strip of
thickness Eav centered around E0. The integration variables

T= 
Tqq�
���� are operators in a product Hilbert space spanned

by real space coordinates, q, and “internal” coordinates, �.
�The internal structure of the matrices Tqq� has been dis-
cussed in Sec. II above.�

The action Squ�T� is obtained from the rigorous functional
integral representation of the two level correlation function
after �a� a saddle point approximation �which generates the
nonlinear constraint Q2=1, where Q=T�T−1� and �b� first

order expansion in commutators �Ĥ ,T−1�. As we will argue
in Appendix A below, these two approximations are largely
immaterial.

1. Semiclassical model

Preliminary contact with the �semi�classical contents of
the theory is made by switching to a Wigner representation.
Upon Wigner transformation of Hilbert space operators
Aq1,q2

→A�x���d�q ei�−1�q·pAq+�q/2,q−�q/2, the operators
Tq,q�→T�x� transmute to the fields in classical phase space
discussed above �22�. Further, tr�¯�→��Eav

dfx�¯� becomes

an integral over a phase space energy shell �Eav
, centered

around E0 and of thickness Eav. We are thus led to the phase
space representation �16�

Sps�T� = −
i
�

2Eav
�

�Eav

dfx

hf tr	T−1 * ��H,*T� −
�

2
�T−1 * �T� ,

�A2�

where the asterisks stand for Moyal products, as usual.
Importantly, the field theory �A2� does not contain mecha-

nisms inhibiting the buildup of rapid fluctuations. The action
S�T� of fields fluctuating on quantum scales ���, ��1 in
classical phase space is qualitatively different from the semi-
classical action considered above: for fields fluctuating trans-
verse to the energy layer of thickness Eav�� / t0�� reduc-
tion of the phase space integral to an integral over a single
energy “shell” is no longer possible. Further, the series ex-
pansion of the Moyal product

�H,*T� = i�
H,T� + �3O��3H�3T�

shows that for fields fluctuating on scales ���, ��1, the
approximation of the quantum commutator by the Poisson
bracket is no longer permissible.

A safe way to eliminate those rapid field fluctuations is by
adding a weak random potential to the Hamiltonian. An en-
semble average over that randomness will generate a second
order differential operator which may be tailored so as to
effectively remove fast field fluctuations. As discussed in
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Ref. �23� a “quantum random potential” Vq��, vanishing in
the classical limit �and parametrically in � weaker than the
“regulator” suggested by Aleiner and Larkin �1,24�� suffices
to remove field fluctuations on phase space scales ��.

Less rigorously, one may argue that the action S of rapidly
fluctuating fields will lead to highly oscillatory exponents
exp�iS� which likely tend to average out: a glance at Eq. �2�
shows that the largest contributions to the action of the prob-
lem, set by the largest value of the correlation energy �
�� / tmix, scale as �−1��. However, fields fluctuating on
scales ���, ��1 will lead to contributions of �−1

��n�1−��, where the odd index n designates the order of the
Moyal expansion. One may argue that in the semiclassical
limit, these terms generate strong phase cancellations which
render the contribution of strongly fluctuating fields effec-
tively meaningless. �For a caveat in this argumentation, see
Appendix A 2 below.�

We note that the above phase cancellation argument re-
sembles the logics inherent to the stationary phase derivation
of the Gutzwiller trace formula from the Feynman path inte-
gral; there, too, avoidance of rapid fluctuations is the domi-
nant principle. More specifically, Gutzwiller’s trace formula
is based on a stationary phase approximation to the Feynman
path integral in S /� �where S stands for the typical value of
a classical action.� This approximation effectively averages
over fine structures on scales �� ,��1. Relatedly, the semi-
classical analysis of spectral correlations will be oblivious to
the averaging of the system Hamiltonian over “quantum”
perturbations Vq��. �Not affecting the classical dynamics,
such perturbations merely change the phases weighing indi-
vidual periodic orbits. In the evaluation of the Gutzwiller
double sum of spectral correlations, these phases cancel out
�25�.�

Summarizing, the semiclassical � model �2� considered in
the main text obtains as a projection of the “quantum” �
model �A1� onto the sector of fields fluctuating on scales
��. This projection may be effected either by averaging the
system over a quantum random potential of strength ��, or
by alluding to the prospected irrelevance of strongly fluctu-
ating actions in the semiclassical limit �i.e., ad hoc restriction
of the functional integral to fields fluctuating on scales ���.

One thus reduces the microscopic theory �equivalent to
the full Feynman path integral representation of Green func-
tion correlators� to an effective theory �likely equivalent to
the Gutzwiller approximation of the Feynman path integral�.

2. Zero modes

While the above phase cancellation arguments apply to
“generic” field configurations, there is one family of rapidly
fluctuating configurations that deserves separate consider-

ation: the quantum action �A1� is nullified by a large number
of zero modes �26� fluctuating at scales of the order of the
Fermi wavelength. Choosing a representation in terms of

eigenfunctions, Ĥ 
�a�=�a 
�a�, wherein T= 
Ta,a�
���� and

�Ĥ ,T�= ��a−�a��
Ta,a�
����, we conclude that there exist N

�Eav/� zero modes T���
aa� whose action is controlled only by

the energy contribution, Squ�Taa�= i
��
4Eav

tr��Taa
−1�Taa�.Upon

Wigner transformation, the zero mode operators turn into N
zero mode functions of the action �A2�, rapidly fluctuating in
classical phase space. These modes are certainly not “un-
physical.” In the case of time reversal noninvariant systems,
one may indeed verify �27� that the integration over Tab leads
to the formally exact eigenvalue decomposition

R2��� =
�2

Eav
�


E0−�a,b
�Eav/2

��� − ��a − �b�� . �A3�

What makes the rigorous derivation of Eq. �A3� possible is a
mathematical principle known as “semiclassical exactness”
�28�. �Incidentally, we note that the possibility to obtain an
exact representation of the spectral correlation function from
the quantum ballistic � model shows that the approximations
on which the derivation of the latter is based—saddle point
approximation and first order expansion in the quantum
commutator—become exact in the limit Eav/�→�.�

In spite of its formal correctness, Eq. �A3� is, of course,
useless in practice �much like the evaluation of the Feynman
path integral in an exact basis of eigenfunctions, formally an
exact alternative to the semiclassical stationary phase ap-
proximation, would be pointless�.

The conservative way to remove the zero modes is, again,
by averaging over weak randomness. Indeed, semiclassical
exactness represents a very delicate structure; even miniscule
changes in the action will spoil the exact cancellation of all
non-Gaussian fluctuations on which Eq. �A3� is based. �Al-
though we are lacking a rigorous justification, we believe
that averaging over a random potential whose inverse scat-
tering time, or level broadening, is as weak as ��q

−1�� will
suffice to effectively remove the zero modes.� It is, then,
favorable to switch to a Wigner phase space representation,
and classify fluctuations along the lines of the semiclassical
analysis of Appendix /A 1. Alternatively one may avoid av-
eraging over randomness and accept the presence of zero
modes—after all, the integration over these modes produces
a meaningful, if useless result. Mapping the integral onto a
phase space representation restricted to slowly fluctuating
modes one may deliberately sacrifice the exact information
stored in the zero modes in return for a semiclassically mean-
ingful approximation scheme.
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